mediately on either side of it, but, in general, more to whichever is closer in energy to it. Our results can be explained if the primary products of the oxidation-reduction processes are "intermediates" like Co- $(NH_3)_5^2$ ⁺. This entity has to be in a low spin state and to be tetragonally pyramidal in shape, with the cobalt atom lying in the square face (which we will suppose contains the *x* and y axes). Lying in the *z* axis in place of a sixth ligand there must be a localized orbital containing a single electron. In order to achieve satisfactory localization a considerable admixing with the $3d_{2}$ orbital by the $4p_{2}$ is necessary. The Co(NH₃₎₅²⁺ "intermediate" will almost certainly have a high energy relative to the reactants, and therefore a similarity in geometry between it and the transition state would be expected. It would be interesting if the "intermediate" were a metastable entity corresponding to a minimum in the potential energy surface, although it need, from the point of view of our argument, to have no more physical significance than that associated with the region on the slope leading downward once the transition state saddle has been crossed.

The single electron associated with the hybrid orbital is one of those involved in the oxidation-reduction process. How it ultimately reaches the cobalt atom cannot be said, but it leaves the oxygen through a σ orbital.

The nitrogen fractionation in $NH₃$ is greater in the $Co(en)_2NH_3OH^{2+}$ complexes than in the pentaammine analog. This effect suggests that what slight changes do occur in the Co-N links tend to be restricted to those involving ammonia rather than ethylenediamine, which is reasonable as it is probably harder to distort a chelated structure than the bond to a monodentate ligand.

The fractionation factors for the hydroxo complexes are significantly greater than for the chloro. It is possible that there is a difference in the fundamental process of electron transfer in the two cases. Chlorine, but not oxygen, has vacant low-lying orbitals and these may well play an important role for they would facilitate a synergic process in which one electron was transferred to the crucial bridging atom at the same time as another left it.

Acknowledgments.-This research was supported by the Atomic Energy Commission (Contract No. AT- (11-1)-37S) and by the National Science Foundation (Grant No. G-20954).

We wish to thank Dr. J. P. Hunt of Washington State University for making his mass spectrometer available to us. Michael Green expresses his gratitude for a Fulbright Travel Grant.

CONTRIBUTION FROM BELL TELEPHONE LABORATORIES, INC., MURRAY HILL, NEW JERSEY 07971

Hydrogen Bonding in Ferrocyanic, Ru thenocyanic, and Osmocyanic Acids

BY A. P. GINSBERG **ASD** E. KOUBEK

Received March 11, 1963'

The infrared spectra of the anhydrous metallocyanic acids $H_4M(CN)_6$ and $D_4M(CN)_6$ (M = Fe, Ru, and Os) were measured in the solid state from 10,000 to 300 cm.⁻¹ at room temperature and at 80° K. The results indicate that these compounds consist of $H_4M(CN)_6$ units, with the *trans* arrangement of the hydrogen atoms, which are linked together by asymmetrical N-H... N hydrogen bonds into a three-dimensional network. *All four* hydrogen atoms per H₄M(CN)₆ unit are involved in hydrogen bonding, but two of them are more strongly hydrogen-bonded than the other two. Assignments are given for most of the bands in the spectra.

Introduction

The protonation of transition metal cyanide complexes has been the subject of several recent papers.^{1,2} This work demonstrated that strong acids reversibly diprotonate the complexes dicyanobis $(1, 10$ -phenan th roline)iron(II), dicyanobis(2,2'-bipyridine)iron(II), -ruthenium(II), and -osmium(II). It was at first suggested that the protons are directly bound to the metal atom as in various protonated transition metal carbonyl complexes and carbonyl hydrides. However, later $work^{2-4}$ indicated that this is incorrect and

that the protons are linked to the nitrogen of the cyanide groups, e.g., $[(phen)_2Fe(CNH)_2]^2^+$. Surprisingly though, there appears to be no evidence of NH stretching or bending absorptions in the infrared spectra of the solid protonated complexes.

The results outlined above prompted us to investigate the infrared spectra of the metallocyanic acids $H₄M(CN)₆$ and $D₄M(CN)₆$, $M = Fe$, Ru, and Os. Although $H_4Fe(CN)_6$ was first reported in 1820⁵ there was until recently no direct evidence bearing on the arrangement or bonding of the protons. The spectra of these compounds are not simple, but they yield interesting information about the arrangement of the protons as well as their bonding. While this work was in

⁽¹⁾ **A. A. Schilt, J. Am.** *Chem. Soc.,* **82,** 3000, 5779 (1960).

⁽²⁾ A. A. Schilt, *ibid.,* **85,** 904 (1963).

⁽³⁾ **K. K. Hamer and L. E. Orgel,** *Natuve,* **190,** 439 (1961). **(4)** G. **Wilkinson in "Advances in the Chemistry of the Coordination Compounds," The Macmillan Co., New York, N.** *Y.,* 1961, p. **56.**

⁽³⁾ **J.** J. **Berzelius,** *Schweigper's* **J., 30,** 44 (1820).

Figure 1.—Infrared spectra of $H_4Fe(CN)_{\theta}$ (upper) and $D_4Fe(CN)_{\theta}$ (lower) from 4000 to 400 cm.⁻¹ at room temperature.

(4000-400 cm.⁻¹) of the $H_4M(CN)_6$ acids and their
deuterio analogs were reported. However, these tions with D₂O and DCl and reprecipitating the product from authors do not attempt as detailed an interpretation of CzHsOD. All manipulations with the deuterio compounds the spectra as we do here, and conclude only that there were carried out in an argon-filled drybox.
is evidence for the presence of unsymmetrical N-H \ldots N Infrared Spectra.—Spectra were measured from 10,000 to a paper⁷ in which the room temperature infrared spectra from the results of Evans, *et al.* There has also recently appeared a note⁸ reporting the space group and number of molecules per unit cell of $H_4Fe(CN)_{6}$. This information greatly facilitated interpretation of the spectra.

Experimental

Preparation of Compounds.-The acids were all obtained by essentially the same procedure, as described in the literature $(H_4Fe(CN)_6)^9$ $H_4Ru(CN)_6$,¹⁰ and $H_4Os(CN)_6$ ¹¹). Briefly, the potassium salt of the hexacyanide was dissolved in dilute hydrochloric acid and the solution was shaken with excess ether to precipitate an "etherate" of the acid contaminated with KCl. The "etherate" was purified by reprecipitating twice from an ethanol solution by addition of excess ether. Ether-free $H_4Os(CN)_6$ and $H_4Ru(CN)_6$ were obtained as white solids by pumping the "etherates" for several hours at 80°. Ether-free $\mathrm{H_4Fe(CN)_{6}}$ resulted from pumping on the ''etherate'' for about 3 hr. at 50".

The compounds were characterized by a potentiometric titration with standard base and by analysis for carbon and nitrogen (Schwarzkopf Microanalytical Laboratory, Woodside, N. Y .). In the case of ferrocyanic acid the residue weight from the carbon determination gave the iron content. Anal. Calcd. for H₄Fe-(CN)e: C, 33.36; N, 38.91; Fe, 25.86; equiv. wt., 54.00. Found: C, 33.6; N, 39.15; Fe, 26.3; equiv. wt., 54.8. Calcd. for H4Ru(CN)e: C, 27.52; N, 32.10; equiv. wt., 65.46.

progress there appeared a preliminary note⁶ followed by Found: C, 28.1; N, 30.8; equiv. wt., 66.3. Calcd. for $H_4Os(CN)_6$: C, 20.57; N, 23.99; equiv. wt., 87.57. Found: C, 20.75; N, 23.6; equiv. wt., 86.0.

tions with D_2O and DCl and reprecipitating the product from

is evidence for the presence of unsymmetrical $N-H \cdots N$ Infrared Spectra.—Spectra were measured from 10,000 to bonds. Furthermore, the measurements we report are
ments: from 10,000 to 4000 cm.⁻¹ on a Cary Model 14 spectro-
more extensive $(10,000-300 \text{ cm.}^{-1} \text{ at room temperature})$
hotometer, from 4000 to 800 cm.⁻¹ on a Perkin-Elmer Model more extensive (10,000–300 cm.⁻⁻¹ at room temperature photometer, from 4000 to 800 cm.⁻¹ on a Perkin-Elmer Model
and at 80°K.) and differ in several important respects 337 grating spectrophotometer and also on a Perki 337 grating spectrophotometer and also on a Perkin-Elmer Model 21 spectrophotometer with sodium chloride optics, from 800 to 400 cm.⁻¹ on a Perkin-Elmer KBr Model 137 spectrophotometer, and from 400 to 300 cm.⁻¹ on a Perkin-Elmer Model 421 dual grating spectrophotometer. In addition, the Model 421 was used to obtain high-resolution spectra in the 2200-2000 cm.⁻¹ range (CN stretching region). Samples were measured as fluorocarbon oil or Nujol oil mulls and also as KBr disks. The mull and disk spectra are essentially the same, except for the presence of an OH stretching band in the disk spectra due to a trace of moisture in the KBr. Measurements at $\sim80^{\circ}$ K. were made on KBr disks only.

Results

The spectra of the Fe, Ru, and Os acids are very similar. In Table I are listed all of the observed frequencies. The estimates of relative intensity given in Table I are very rough. Figure 1 presents the room temperature spectra of $H_4Fe(CN)_6$ and $D_4Fe(CN)_6$ from 4000 to 400 cm.⁻¹. The region from 400 to 300 cm.⁻¹, not illustrated, contains only two very weak bands in the case of $H_4Fe(CN)_{6}$, but with the Ru and Os acids the medium intensity bands corresponding to 419 and 406 cm.⁻¹ in $H_4Fe(CN)_6$ occur below 400 cm.⁻¹. From 10,000 to 4000 cm.^{-1} only very weak absorptions are found; spectra could be recorded only with extremely concentrated KBr disks $(\sim 1: 1 \text{ sample: KBr},$ \sim 2 mm. thick; such a sample is completely opaque in the 4000-300 cm.⁻¹ region). Cooling to 80° K. causes a very marked increase in the intensity of these bands; this is illustrated in Figure *2,* which shows the

⁽⁶⁾ D. **Jones and** D. **F. Evans,** *Nature,* **19% 277 (1963).**

⁽⁷⁾ D. **F. Evans,** D. **Jones, and** *G.* **Wilkinson,** *J. Chem. Soc.,* **3164 (1964).** *(8)* **R. Kern, Acta** *Cyyst.,* **17, 1612 (1964). (9) "Handbuch der Preparativen Anorganischen Chemie," Brauer,**

Ed., 2nd Ed., Vol. **2, Ferdinand Enke, Stuttgart, 1962, p. 131.5.**

⁽¹⁰⁾ F. Krauss and *G.* **Schrader,** *2. unoyg. &em. Chem.,* **1611, 59 (1927). (11) A. Martius,** *Ann.,* **117, 356 (1861).**

		INFRARED ABSORPTION FREQUENCIES $(CM, {}^{-1})$ OF $H_4M(CN)_6$ AND $D_4M(CN)_6$ Acids ⁴				
$H_4Fe(CN)_6$	$H_4Ru(CN)_6$	$H_4Os(CN)$	$D_4Fe(CN)_6$	$D_4Ru(CN)_{6}$	$D_4Os(CN)_{6}$	Assignment ^b
5848^c vw	5882^c vw	5865° vw				$\nu_1 + \nu_{22}, \nu_1 + \nu_{22}$
$5634c$ sh	5634^c yw	5634^c vw				$\nu_1 + \nu_{23}, \nu_2 + \nu_{22}$
5089^c vw	5102^c vw	5102^c vw				$\nu_1 + \nu_{16}$, $\nu_7 + \nu_{22}$
\sim 5050 c sh	\ldots	\sim \sim \sim				Ternary combination
4854 ° sh	\sim 4831°	\sim \sim				$\nu_7 + \nu_{22}^{\prime}, \nu_{1}^{\prime} + \nu_{16}^{\prime}$
\sim 4739 c sh	\sim \sim	\sim	Not examined	Not examined	Not examined	$\nu'_{2} + \nu'_{23}$
\sim 4612 c sh	\sim 4630 c sh	\ldots				$\nu_2 + \nu_{16b}, \nu_7 + \nu_{23}$
4562^c < v v w	4568^c < v v w	${\sim}4520^c$ $<$ vvw				Ternary combination
~ 100 \sim	\sim 4494 $^{\circ}$ $<$ vvw	\ldots				$\nu'_{2} + \nu_{28}, \nu_{8} + \nu'_{23}$
4444^c vvw	4444^c vvw	4434^c vvw				$\nu'_{1} + \nu_{24}$, $\nu_{3} + \nu'_{22}$, $\nu'_{2} + \nu_{16}$, $\nu_{7} + \nu'_{23}$
4210^c w	4224^c w	4224^c w				$v_2 + v_{24}$, $v_3 + v_{23}$, $v_8 + v_{28}$, $v_8 + v_{16}$
4167^c w	4167° w	$4163c$ w				$v_{12} + v_{16}$, $v_7 + v_{16}$
\sim 4115 $^{\circ}$ sh	$4154c$ sh	4144^c sh				$v_7 + v_{16h}$
\sim 3200 $^{\circ}$ sh, wm	\sim 3200 \degree sh, w	\sim 3200 sh, w	2630 w	2640 w	\sim 2630 w	$\nu_1 + L$, $\nu_2 + L^e$
3040^c vs	3050^c vs	3060° vs	2460 vs	2470 vs	2460 vs	ν 22
\sim 2770 c ms	\sim 2790 $^{\circ}$ ms	\sim 2780 $^{\circ}$ ms	\ldots	\ldots	\sim \sim	$\nu_{22}' = \nu_{24} + \nu_4$, $\nu_3 + \nu_{26}$ res, with ν_{22} in H acids
\sim 2630 $^{\circ}$ sh	\sim 2650 $^{\circ}$ sh	\sim \sim \sim	\sim \sim \sim	\ldots	\ddotsc	$\nu_4 + \nu_{26}$
$2570c$ s	2580° s	$2580c$ s	2280 vs	2290 vs	2280 vs	v_{23}
2370^c ms	2370^c ms	2350^c ms	1905 wm	1905 wm	1905 wm	$\nu'_{23} = \nu_{24} + \nu_5$, $\nu_3 + \nu_{25}$ res. with ν_{23} in H acids
2300^c sh, vw	\sim \sim \sim	\sim \sim \sim	\ddotsc	\ddotsc	\cdots	
2134 w	2145 w	2149 w	\sim \sim \sim	\sim \sim	\ddotsc	$\nu_8 + L$, $\nu_{28} + L$
$2125 \text{ sh}, \text{w}$	2135 sh, w	2134 w	\sim \sim \sim	$\alpha \rightarrow \alpha$	\sim \sim	$\nu_{12} + L$, $\nu_{18a} + L$
${\sim}2106\,\sh$	2110s	2108s	2100 s ^d	2100 s ^d	2100 s ^d	ν_{23}
2096 s	2104 sh	$2097\$ sh	\sim 1720 s	\sim 1710 s	\sim 1710 s	$\nu_{1\theta_\mathrm{fl}}$
2072 s	2078 s	2072s	\sim 1610 ms	\sim 1610 s	\sim 1590 s	ν_{16} ν 16b
\sim 2060 sh, vw?	\sim 2062 sh, vw?	\sim 2058 sh, vw?	2061 vw	\sim 2064 vw	\sim 2058 sh. vw	ν ⁽¹³ CN)
\sim 2040 sh, vw?	\sim 2045 sh, vw?	\sim 2045 sh, vw?	\sim \sim \sim	\ldots	\cdots	ν (13CN)
1960 w	1950 w	1920 w	\sim 1400 w	\sim 1410 w	\sim 1400 w	$\nu_6 + \nu_{26}$ and $\nu_4 + \nu_{27}$
\sim 1775 c sh, w	\sim \sim	$\epsilon \rightarrow \infty$	\sim 1300 sh, w	\cdots	\sim 1275 sh, w	$\nu_{5} + \nu_{25}$
1650^c ms	\sim 1650 $^{\circ}$ ms	\sim 1650 $^{\circ}$ ms	1215 ms	1235 ms	1220 ms	
1620^c sh	\ldots	\ldots	\ldots	\cdots	.	ν_{24}
1590^c sh	\sim 1600 c sh	\sim 1600 c sh	\sim 1150 sh	\sim 1175 sh, m	\sim 1150 sh	$\nu_6 + \nu_{25}$ and $\nu_5 + \nu_{27}$
\sim 1475 $^{\circ}$ sh, w	\sim 1450 ^c sh, w	\sim 1450 $^{\circ}$ sh	\sim 1100 sh	\sim 1100 sh	\ldots	P
1380^c vw	1380^c vw	\ddotsc	\sim 1020 sh	\ldots	\sim 1000 sh	
1290^c w	1300^c wm	\sim 1280 wm	960 wm	965 wm	950 w	$\nu_6 + \nu_{27}$
1270^c sh, w	\sim 1275 c sh		\sim 920 sh, w		\sim 930 sh, w	$\nu_{\,2\,6}$
~ 060 sh	\ldots	\sim \sim \sim 960 sh	\ldots	.		ś.
887 m	895 m	890 m	640 m	ϵ . ϵ 647 m	\cdots 644 m	
\sim 815 sh, vw	\sim 835 sh, vw	\sim 835 sh, vw	\sim 790 vw	\sim 825 vw	\sim 825 vw	ν 25 Ŧ.
692 m	\sim 690 sh	\sim 680 sh	515 m	515 m	502 m	
668 m	670 m	660 m	500sh		485 sh	ν_{27}
\sim 600 sh	\sim 550 sh			\cdots		
588 ms	543 ms	\ddotsc	$602 \,$ sh 588 ms	\sim 555 sh	.	ν_{29} and ν_{18} or ν_{19}
473 w	475 sh	544 ms 496sh	472 w	543 ms 476 w	544 ms.	P.
$463 \text{ sh}, \text{vw}$	450 sh	470 sh	457 vw	462 vw	\sim \sim \sim 470 sh	
448 m	459 m		441 m		430 m	μ_{32}
		484 m		414 m		ν_{19} or ν_{18}
\sim .	\ldots	\sim 446 sh	\sim \sim \sim	\ldots	\sim 446 vw	2
419 m	\sim 367 sh	376 sh	415 m	\sim 363 sh	370 m	ν_{17} and ν_{29}
406 m 342 vw	362 m 332 vw	371 m 348 vw	400 m	355m	360 m	
			\sim \sim \sim	\sim \sim \sim	\cdots	P
300 vw	\sim \sim \sim	302 vw	\sim \sim \sim	\sim \sim \sim	\cdots	5

TABLE I INFRARED ABSORPTION FREQUENCIES (CM.⁻¹) OF $\text{H}_{4}\text{M}(\text{CN})_{6}$ and $\text{D}_{4}\text{M}(\text{CN})_{8}$ Acids⁴

a m, medium; s, strong; v, very; w, weak; sh, shoulder; ?, questionable band or assignment; \sim , indicates an absorption, the posi-In meaning, s, strong, v, very, w, weak, sir, shoulder, i, questionable band or assignment, \sim , indicates an absorption, the position of which was difficult to estimate because it was imperfectly resolved from adjoining cm.-l from 4000 to 2200 cm.-', *&2* cm.-' from 2200 to 2000 cm.-', 120 cm.-' from 2000 to 1300 cm.-' and **15** cm.-' from 1300 to 300 cm.⁻¹. δ Alternate assignments are possible for the NH bending modes and the combination tones arising from them. We emphasize that there is no very strong reason to favor the set of assignments of these bands chosen for this table. From spectrum of sample cooled to 80°K. ^d Very asymmetrical band. \cdot L is presumed to be a lattice frequency of \sim 170 cm.⁻¹. *f* L is taken to be a lattice frequency of \sim 30 cm.⁻¹.

6500-4000 cm.⁻¹ region. From 6500 to 10,000 cm.⁻¹ the absorption increases steadily without reaching a maximum. In the $4000-300$ cm.^{-1} range cooling the proton acids to 80'K. results in a sharpening of many of the bands with a consequent improvement in the resolution of overlapping absorptions. Figure 3 exhibits the parts of the low-temperature spectrum of $H_4Fe(CN)_6$ that are most effected-the dashed lines are considered to represent the envelopes of the individual bands which contribute to the over-all absorption. The spectra of the deuterio acids are practically unchanged by cooling to $80^{\circ}K$.; this indicates the absence of any phase change between room temperature and 80'K. In Figure **4** is shown a room temperature high-resolution spectrum of $H_4Os(CN)_6$ from 2200 to 2000 cm.⁻¹.

Table II summarizes the frequency shift factors $(\nu_{\rm H}/\nu_{\rm D})$ observed on deuteration.

Interpretation of the Spectra

The main objective of our study of the $H_4M(CN)_6$ acids was to obtain information about the arrangement and bonding of the protons in the solid. In presenting the interpretation we first discuss each region of the spectrum, making empirical identifications of the absorptions (e.g., as CN stretching fundamentals, combination tones, etc.). This leads to definite conclusions about the bonding of the protons and their arrangement. It is not possible to deduce unambiguously from the spectra the site symmetry of M , but the X-ray space group of $H_4Fe(CN)_6$ supplies this. In the last section

Figure 2.-Infrared spectrum of $H_4Fe(CN)_6$ from 6500 to 4000 cm.⁻¹ at room temperature and at 80° K.

Figure 3.-Infrared spectrum of $H_4Fe(CN)_6$ at $80^\circ K$. in the regions 3800-2200 and 1900-1200 cm.⁻¹ The sample used for this spectrum was less concentrated than that which gave Figure 1.

TABLE I1 SHIFTS OF VIBRATIONAL FREQUENCIES ON DEUTERATION OP H.M(C N) ϵ Acine

		σ . 11412. σ 1, σ 11. σ					
--H4Fe(CN)6---		$-\text{H}_4\text{Ru(CN)}$			$-\text{H}_4\text{Os}(\text{CN})_6$		
νH^a	$\nu_{\rm H}/\nu_{\rm D}{}^{a}$	ν H ^a	$\nu_{\rm H}/\nu_{\rm D}{}^{a}$	$\nu \mathbf{H}^a$	ν H $/\nu$ D ^a		
\sim 3200	$1.22\,$	\sim 3200	1.21	\sim 3200	1.22		
3040	1.24	3050	1.23	3060	1.24		
2570	1.13	2580	1.13	2580	1.13		
2370	1.24	2370	1.24	2350	1.23		
2096	1.22	2104	1.23	2097	1.23		
2072	1.29	2078	1.29	2072	1.30		
1960	1.40	1950	1.38	1920	1.37		
\sim 1775	1.36	$\epsilon \rightarrow \infty$	\cdots	\cdots	\cdots		
1650	1.36	\sim 1650	1.34	\sim 1650	1.35		
1590	1.38	\sim 1600	1.36	\sim 1600	1.39		
\sim 1475	1.34	\sim 1450	1.32	\sim 1450	.		
1380	1.35	1380	\cdots	\cdots	\cdots		
1290	$1.34\,$	1300	$1.35\,$	\sim 1280	$1.35\,$		
1270	1.38	1275	\cdots		\cdots		
887	1.38	895	1.38	890	1.38		
692	1.34	690	1.34	\sim 680	1.35		
668	1.34	670		660	$1.36\,$		

 a_{VH} = frequency in ¹H acid; v_D = frequency in ²H acid.

we make assignments of the infrared bands to normal vibrational modes.

In the ensuing discussion the frequencies quoted are for ferrocyanic acid unless otherwise indicated. The corresponding frequencies for ruthenocyanic and osmocyanic acid may be found in Table I.

NH Stretching Frequencies.—The $H_4M(CN)_6$ acids absorb very strongly from 3500 to 2200 cm.⁻¹. At room temperature the over-all absorption envelope in this region appears as two partially resolved bands with one shoulder on the higher and two shoulders on the lower energy band. On cooling to 80° K. these features are much better resolved (Figure 3) so that the over-all absorption envelope is seen to be made up of five rather broad overlapping bands $(\sim 3200, 3040,$ \sim 2770, 2570, and 2370 cm.⁻¹) some of which have weak shoulders. Each of these bands either shifts or disappears on deuteration.

In the spectrum of deuterioferrocyanic acid there is no absorption between 2700 and 3500 cm.⁻¹, demonstrating that the sample is completely deuterated. The bands at 2630, 2460, 2280, 1905, \sim 1720, and \sim 1610 cm.⁻¹ are clearly related to the proton acid absorptions just discussed.¹² Cooling to 80°K. has little effect on them. At room temperature they are considerably narrower than the related proton acid bands. The correspondence between these deuterio acid absorptions and the proton acid absorptions in the 3500- 2200 cm.⁻¹ region is not straightforward; we defer discussion of this until the section on CN stretching frequencies.

The NH stretching frequency in HNC (probably linear) has recently been assigned as 3583 cm.^{-1} from observations on HNC in an argon matrix.13 In HNCO (HNC angle = 125.5°), the NH stretching vibration is reported¹⁴ to be at 3531 cm.⁻¹. It is well known that hydrogen bonding lowers AH stretching frequencies and makes the absorption bands very broad and intense.15 In view of these facts we assign the strong proton acid bands at 3040, \sim 2770, 2570, and 2370 cm^{-1} , at least in part, to NH stretching vibrations lowered in energy by hydrogen bonding. The weak shoulders (\sim 3200 and \sim 2630 cm.⁻¹) may be attributed to combination tones. Comparison with stretching frequencies for hydrogen-bonded OH, where correlations have been made¹⁶ with the $O-H\cdots O$ bond type, suggest that the hydrogen bonding is of the unsym-

(14) C. Reid, *ibid.,* **18,** 1544 (1950).

(15) *See,* for example, *G.* C. Pimentel and **A.** L. McClellan, "The Hydrogen Bond," W. **H.** Freeman and Company, San Francisco, Calif., 1960. Chapter **3.**

(16) R. Blinc, D. Hadzi, and **A.** Novak, Z. *Elektvochem.,* **64,** 567 (1960).

⁽¹²⁾ Since the sample is completely deuterated we reject the possibility that either the \sim 1720 or \sim 1610 cm.⁻¹ band is a residue of the absorption, observed to shift on deuteration, which occurs in this region in H₄Fe(CN)₆. The possibility of an underlying unshifted absorption is also rejected because a plausible assignment could not be made for it. In ref. **7** a broad strong absorption at 1600 cm.⁻¹ in both D4Fe(CN)₆ and D4Os(CN)₆ (D4Ru(CN)₆ was not examined) is attributed to residual H in the partially deuterated $(90-95\%)$ samples. We have checked this point carefully and have obtained spectra of all three deuterio acids which show practically no absorption between 2700 and 3500 cm.⁻¹ and still have strong absorptions at \sim 1610 and \sim 1720 cm.⁻¹. This is a conclusive argument against the interpretation of ref. **7.**

⁽¹³⁾ D. **E.** Milligan and M. E. lacox, *J. Chem. Phys.,* **89,** 712 (1963).

Figure 4.—High-resolution infrared spectrum of $H_4Os(CN)_6$ from 2200 to 2000 cm.⁻¹.

metrical $N-H \cdots N$ type (this description includes bonds which become effectively symmetrical because of tunneling of the proton between two potential energy minima).

An important observation is that no absorption maxima are found between 3200 and 3600 cm.^{-1}, where nonhydrogen-bonded NH would be expected to absorb. This indicates that *all* of the protons in the $H₄M(CN)₆$ acids are engaged in hydrogen bonding.

Room temperature spectra of all three proton acids show a moderately broad and strong absorption at 1625 cm.⁻¹ with an indistinct shoulder at \sim 1560 cm.⁻¹. On cooling to 80° K. this absorption is sharpened and better resolved into a band at 1650 cm^{-1} with a shoulder at 1590 cm.⁻¹ (the resolution of these bands was best in the case of ferrocyanic acid, where a shoulder at 1620 cm.^{-1} also appeared). Both bands have deuteration shifts in the range $\nu_{\text{H}}/\nu_{\text{D}} = 1.37 \pm 0.03$, and they are probably NH bending modes or a bending mode plus a combination tone. However, we must also consider the possibility that one or both of the 1650, 1590 $cm.$ ⁻¹ bands is due to a very strongly hydrogen-bonded NH stretching frequency. A symmetrical collinear N-H-N hydrogen bond would be expected to give rise to a broad and intense absorption in the 1500-1800 $cm.$ ⁻¹ range.^{16,17} A symmetrical noncollinear N-H-N bond might also give rise to an absorption in this region.

There is nothing in the infrared spectra to tell us whether the hydrogen bonding in the $H_4M(CN)_6$ acids is intramolecular or intermolecular. However, we note that intramolecular hydrogen bonding requires a very highly bent C-N-H arrangement: for a linear internal N-H \cdots N bond a C-N-H angle of 45° would be required. A decrease in the C-N-H angle below 180° is to be expected because of resonance between the canonical forms¹⁸

> $M-C \equiv N-H$ and $M=C$ '\ (linear) (bent) H

This should lead to a C-N-H angle intermediate between 180° and 114° . The methyl derivatives of $H_4Fe(CN)_6$, $Fe(CNCH_3)_6Cl_2$, and $trans-Fe(CNCH_3)_4$ - $(CN)_2$ are reported to have C-N-C angles of 173 and 167° , respectively.¹⁹ The Fe-C distances in these compounds correspond to a bond order of 1.5.19 Furthermore, for a linear $Fe-C-N$ arrangement the intramolecular N-N distance should be about 4.25 Å., which is far too great for hydrogen bonding. Hence intramolecular hydrogen bonding would also require that the Fe-C-N angle be considerably less than 180° . In view of these facts it seems safe to assume that the hydrogen bonding is intermolecular.

The space group of $H_4Fe(CN)_6$ is reported⁸ to be $P2_1/a$ (C_{2h}^{5}) with two molecules per unit cell. The iron atoms must therefore have site symmetry C_i . The great similarity of the spectra of $H_4Ru(CN)_6$ and H_4 - $Os(CN)₆$ to that of H₄Fe(CN)₆ indicates that the ruthenium and osmium atoms also have C_i site symmetry.

If the acids contain symmetrical N-H-N bonds, there should be six hydrogen atoms associated with each $Fe(CN)_{6}$ unit. Four of the hydrogen atoms will be shared with neighboring $Fe(CN)_6$ units through N-H-N bonds while the remaining two will be connected to neighboring units only *via* weak asymmetrical hydrogen bonds. Under the site symmetry C_i such a system must give rise to *three* infrared-active N-H stretching modes $(3 A_u)$. Of these, two should be in the 1500- 1800 cm ⁻¹ range and might be assigned as the 1650 and 1590 cm .⁻¹ bands. The third band is expected in the region where we observe four strong bands attributable to $N-H$ stretching. For the model with symmetrical N-H-N bonds to be acceptable we would therefore have to account for all four of these bands as somehow arising from one N-H stretching fundamental. It does not appear possible to do this in a reasonable manner: at least two of the bands in the 2300-3200 cm.-' region must be due to *diferent* N-H stretching fundamentals.

We conclude that the spectra indicate all of the hydrogen bonds to be of the asymmetrical $N-H\cdots N$ type. Since the site symmetry is C_i the four hydrogens must have the *trans* arrangement (in a later section this fact is deduced independently from the spectra). For linear C-N-H this geometry has D_{4h} symmetry. The site symmetry is reduced to C_i by the hydrogen

⁽¹⁷⁾ R. G. Snyderand J. **A.** Ibers, *J. Chem. Phrs.,* **36,** 1356 (1962). (18) L. Pauling, "The Xature of the Chemical Bond," 3rd Ed., Cornel1 University Press, Ithaca, N. *Y.,* 1960, **pp.** 336-388.

⁽¹⁹⁾ H. M. Powell and G. W. R. Bartindale, *J. Chem.* SOC., 799 (1945); R. Hulme and H. *AI.* Powell, *ibid.,* 719 (1957).

bonding and possibly also by nonlinearity of the C-N-H. The expected number of infrared-active N-H

stretching modes for this model is two (2 **Au),** and each of these might be split into two bands by interaction between the two molecules in the unit cell (unit cell group splitting) to give a total of four bands as observed. Although unit cell group splitting might be appreciable in a hydrogen-bonded lattice, the separation between the observed bands $(>200 \text{ cm.}^{-1})$ is probably much too large to be explained in this way, and it seems necessary to account for the two "extra" bands in another manner. This is discussed in the last section.

CN Stretching Frequencies.—Between 2000 and 2200 cm.^{-1} two main bands are found in $H_4Fe(CN)_{6}$, at 2072 and 2096 cm.⁻¹. Under high resolution the 2096 cm.⁻¹ band exhibits a shoulder at \sim 2106 cm.⁻¹. For the ruthenium and osmium compounds the situation is slightly different in that the shoulder on the higherenergy main band appears on its low-energy side (Figure 4). The high-resolution spectra also show the presence of two weak absorptions, at 2125 and 2134 cm. $^{-1}$, and the probable presence of very weak shoulders at \sim 2060 and \sim 2040 cm.⁻¹.

Under C_i site symmetry three $\nu(CN)$ fundamentals are expected to be active in the infrared $(3 A_u)$. The observed spectrum is in good agreement with this: the 2072, 2096, and \sim 2106 cm.⁻¹ bands must be the three fundamentals. The remaining weak and very weak absorptions are assigned as combination tones and as ν (¹³CN).

In the deuterio acids $\nu(ND)$ should occur close to $\nu(CN)$. Since four CN groups per $D_4M(CN)_6$ are directly bound to deuterium, and since $\nu(CN)$ and ν -(ND) belong to the same symmetry species, we may expect that the two $\nu(ND)$ fundamentals will interact strongly with two of the $\nu(CN)$ frequencies, while the third CN stretching frequency should be relatively unaffected. The spectra are consistent with this expectation. A band is observed at 2100 cm.⁻¹ which even under high resolution remains single, although it is asymmetric. This must be the $\nu(CN)$ fundamental due to stretching of the undeuterated cyanide groups. The bands at \sim 1720 and \sim 1610 cm.⁻¹ may then be identified as resulting from a very strong interaction between the remaining two $\nu(CN)$ frequencies and the two ND stretching vibrations. The strong absorptions at 2460 and 2280 cm.^{-1} are the other two bands which result from this interaction. In Tables I and **I1** it is assumed that the 2460 and 2280 cm.⁻¹ absorptions correspond to the $\nu(NH)$ at 3040 and 2570 cm.⁻¹, while the \sim 1720 and \sim 1610 cm.⁻¹ bands are taken to correspond to the ν (CN) at 2096 and 2072 cm.⁻¹, respectively. The nature of these corresponding vibrations is, however, quite different in the proton acids and the deuterio acids.

We have accounted for all of the bands in the 4000- 1500 cm.⁻⁴¹ region of the deuterio acids with the exception of the weak band at 2630 cm.⁻¹ and the rather narrow band at 1905 cm.⁻¹. The former is clearly the deuterio analog of the weak \sim 3200 cm.⁻¹ band, but the origin of the latter is not certain. We tentatively assume that it corresponds to the 2370 cm^{-1} band in the proton acid spectra. There appears to be no deuterio analog of the 2770 cm.⁻¹ proton acid absorption.

The CN stretching frequencies in the acids are greater than those in the corresponding potassium salts. Bonino and Fabbri²⁰ have made a careful study of K_{4} - $Fe(CN)_{6} \cdot 3H_{2}O$ and anhydrous $K_{4}(CN)_{6}$ in the CN stretching region. They found nine bands at nearly the same frequencies in both the trihydrate and the anhydrous compound. The spectrum of the anhydrous salt is well resolved, consisting of two very strong doublets and one strong doublet as well as one medium intensity and two weak bands. High-resolution spectra²¹ of anhydrous $K_4Ru(CN)_6$ and $K_4Os (CN)₆$ in the CN stretching region are nearly identical with that of $K_4Fe(CN)_6$. Crystal structure determinations²² have shown that $K_4Fe(CN)_6.3H_2O$ exists in monoclinic and tetragonal forms while $K_4Ru(CN)_6$. $3H₂O$ forms only monoclinic crystals isomorphous with the iron salt. For the monoclinic structure the space group is $C2/c$ (C_{2h} ⁶) with four molecules in a unit cell. The metal atoms must therefore be at sites with C_i symmetry. Bonino²³ assigns the three strong doublets in $K_4Fe(CN)_6$ to the 3 $A_u \nu(CN)$ expected under C_i site symmetry, and he assumes that each band is doubled by the unit cell group splitting. If we accept this we may compare the average of each doublet frequency in the potassium salts with the corresponding $\nu(CN)$ in the acid, to get the increase in $\nu(CN)$ on protonation. The results are given in Table 111.

TABLE **I11**

CN STRETCHING FREQUENCIES IN $K_4Fe(CN)_6$, $K_4Ru(CN)_6$, AND $K_4Os(CN)_6$ and Their Shifts on Protonation
 $\nu(CN)_{\text{acid}} - \nu(CN)_{\text{salts}}$.

					$\nu(\text{Uiv})$ acid $\nu(\text{Uiv})$ salts, cm.			
$K_4Fe(CN)_6$	$\nu(\mathrm{CN})$, cm. $K_4Ru(CN)_6$		$K_4Os(CN)$ e	H4Fe- (CN)	H4Ru- (CN)	H_4Os - (CN)		
2073 2068 2062	2085 2076	2080	2082 2076 2069	38	30	32		
2050) 2047	2060	2058	2053 2049	49	46	48		
2044 2031 2028	2055 2042	2039	2045 2029 2026	44	39	46		
2026	2036		2022					

(20) G. B. Bonino and G. Fabbri, *Alli accad. %ad. Lincri, Rend. Classe Sci.* 5s. *mat. nul.,* **20, 414** (1966).

⁽²¹⁾ A. P. Ginsberg and K. Koubek, unpublished results.

⁽²²⁾ V. A. Pospelov and G. S. gdanov, *Z. Pis. Khitn.,* **21, 405,** 621, 879 (1947).

⁽²³⁾ G. B. Bonino, Atti accad. nazl. Lincei, Rend. Classe Sci. fis. mat. nat., **20,** 418 (1956).

There is considerable evidence indicating that $\nu(CN)$ always increases when an atom is attached to the nitrogen of a cyanide group already bound in a moiecule *via* its carbon atom.^{24,25} The possibility that this effect is due to a genuine increase in the CN force constant has been suggested, but it has been shown²⁵ that in many cases the observed increase in $\nu(CN)$ may be accounted for by mechanical interaction between the CN stretch and the stretching motion of the atom linked to the CN nitrogen (the latter occurs at *lower* frequencies than $\nu(CN)$. In the $H_4M(CN)_6$ acids we have a somewhat different situation: $\nu(NH)$ is at higher energy than $\nu(CN)$ and so mechanical interaction with the NH stretch should *lower* $\nu(CN)$. However, mechanical interaction with the hydrogenbond stretching frequency $v(N \cdots H)$ might raise $v(CN)$. We do not have a satisfactory explanation for these results.

NH Bending Frequencies.-In HNC the NH bending frequency has been observed¹³ at 535 cm.⁻¹, and in HNCO it has been assigned¹⁴ as 798 cm.⁻¹. Hydrogen bonding is known to shift AH bending modes to higher energy.15 It may be expected that a hydrogen bond which is not collinear with the AH bond, and which has an appreciable component in the direction of the AH bending motion, would be especially effective in raising the AH bending frequency.

Under site symmetry $C_i H_4M(CN)_6$ should give rise to four infrared-active NH bending modes (4 A_u) . Unit cell group splitting might split some or all of these into two closely spaced bands.

We have already discussed the 1650 and 1590 cm.^{-1} bands. Since their assignment as symmetrical N-H-N stretching frequencies is not satisfactory, they must be a split NH bending fundamental or, more likely, a bending fundamental (1650 cm.^{-1}) and a combination tone. The second component of the 1650 cm^{-1} fundamental might be the 1620 cm^{-1} band, observed only in $H_4Fe(CN)_6$, for which we have no other assignment ($cf.$ the last section).²⁶

In addition to the 1590, 1620, and 1650 cm. $^{-1}$ bands there are between 650 and 1800 cm.^{-1} eight other absorptions for which ν_H/ν_D is in the range 1.35 \pm 0.03. Of these the rather indistinct shoulders at \sim 1775 and \sim 1475 cm.⁻¹ and the very weak band at 1380 cm.⁻¹ are undoubtedly combination tones. The pair of bands at 1290 and 1270 cm.⁻¹ (only the 1290 cm.⁻¹ component can be seen at room temperature) are the least intense of the remaining five bands. One possibility is to assign the 1290, 1270 cm.^{-1} pair as an NH bending fundamental split by the unit cell group interaction. The third and fourth NH bending modes must then

be the 887 cm.^{-1} band and the doublet at 692, 668 cm.⁻¹. An alternative is to assign the 1290, 1270 cm.⁻¹ pair as combination tones. The bands at 887, 692, and 668 cm.^{-1} are then the three remaining NH bending fundamentals.²⁷

MC Stretching and MCN Bending Modes.---In the 300-650 cm.⁻¹ region $K_4Fe(CN)_6$ in aqueous solution exhibits strong bands at 583 and 416 cm. -1 .²⁸ According to Jones²⁸ these are, respectively, the F_{1u} $\delta(MCN)$ bending vibration and the F_{1u} $\nu(MC)$ stretching vibration. Jones²⁹ has also identified $\delta(MCN)$ as being at higher energy than $\nu(MC)$ in $K_3Co(CN)_6$, $K_3Rh (CN)_6$, and $K_3Ir(CN)_6$.

In the 300-650 cm.⁻¹ region of the $H_4Fe(CN)_6$ spectrum there are bands of appreciable intensity at 406, 419, 448, and 588 cm.⁻¹ with a shoulder at \sim 600 $cm. -1.30$ These bands are either unshifted or shifted by very small amounts on deuteration. 31 Under C_i site symmetry three infrared-active MC stretching vibrations $(3 A_u)$ and six infrared-active MCN bending vibrations (6 A_u) are expected. Under the unperturbed D_{4h} symmetry of $H_4M(CN)_6$ there should be two MC stretching $(A_{2u} + E_u)$ and three MCN bending $(A_{2u} + 2 E_u)$ modes active in the infrared. The observed spectrum is in poor agreement with the prediction of nine fundamentals for the C_i site symmetry, but it is in good agreement with the prediction of five fundamentals for Dqh symmetry. Following Jones we may assign 406 and 419 cm. $^{-1}$ as the MC stretching frequencies and 448, 588, and \sim 600 cm.⁻¹ as the MCN bending frequencies. Evidently the site symmetry perturbation, which is presumably due mainly to the hydrogen bonding, does not observably split the E_u MC stretching and MCN bending vibrations. The very weak shoulder at 463 cm.⁻¹ may be a B_{2u} MCN bending mode which is not infrared-active under D_{4h} but becomes active under the site group.

If the $H_4M(CN)_6$ acids have the *cis* arrangement of the protons their maximum unperturbed symmetry would be C_{2v} , for which six MC stretching and nine MCN bending vibrations should be active in the infrared. This is in complete disagreement with the spectrum and, coupled with the very good agreement for D_{4h} symmetry, indicates that the protons have the *trans* geometry. This conclusion is independent of our knowledge of the space group, from which the same result is reached.

The MC stretching vibrations in $H_4Fe(CN)_6$ are at practically the same frequencies as in the potassium salt. This suggests that protonation of the CN groups has little effect on the MC bonding.

⁽²⁴⁾ H. J. Coerver and C. Curran, *J. Am. Chem.* Sac., *80,* 3522 (1958); W. Gerrard, M. F. Lappert, H. Pyszora, and J. **W.** Wallis, *J. Chem.* Soc., 2182 (1960); D. F. Shriver, *J. Am.* Chem. *Sac.,* **86,** 1405 (1963).

⁽²⁵⁾ D. **A.** Dows, **A.** Haim, and W. K. Wilmarth, *J. Inorg. Nucl. Chenz.,* **21, 33** (1961); J. H. Enemark and R. H. Holm, *Inoig. Chem.,* **3,** 1516 (1964).

⁽²⁰⁾ The possibility that the 1650 cm. **-1** band is due to alcohol or water in the sample is rejected because there is no indication in the spectra of an OH stretching band (except in KBr disk spectra where it is due to water in the KBr), and also because the 1650 cm.⁻¹ band is intense and the analytical results show the samples to be essentially solvent-free.

⁽²⁷⁾ Reference 7 reports only three bands in the 650-1800 cm.⁻¹ region. These are at ca. 1600, 880, and 680 cm.⁻¹. The 1600 and 880 cm.⁻¹ bands are reported to have ν_H/ν_D of about 1.45 and 1.38, respectively. Only the 1600 and 880 cm.⁻¹ bands were considered to be NH bending modes.

⁽²⁸⁾ L. H. Jones, Z?ioi,g. Chem., **2, 777** (1963).

⁽²⁹⁾ **1,.** H. Jones, *J.* Chem. *Phys.,* **36,** 1209 (1962); **41,** 856 (1964).

⁽³⁰⁾ Reference 7 reports only the 448 and 588 cm. ⁻¹ bands.

⁽³¹⁾ The 459 cm.⁻¹ band of $H_4Ru(CN)_6$ shifts by 45 cm.⁻¹ while the 484 cm.⁻¹ band of $H_4Os(CN)_6$ shifts by 54 cm.⁻¹. These absorptions correspond to the 448 cm.⁻¹ band of $H₄Fe(CN)₆$, which shifts by only 7 cm.⁻¹. The reason for this difference is not apparent.

Nature of the Hydrogen Bonding in $H₄M(CN)₆$ Acids

We have seen that the solid acids consist of H_4M -(CN)6 units, with *truns* arrangement of the hydrogen atoms, which are linked together by asymmetrical N-H \cdots N hydrogen bonds. *All* of the hydrogen atoms are involved in hydrogen bonding. This means that there must be four hydrogen-bond acceptors per H_4 - $M(CN)_{6}$ unit; two of these are obviously the lone pairs on the two unprotonated cyanide groups. Possibilities for the other two acceptors are: (1) the additional lone pairs on the unprotonated cyanide groups made available by resonance with the double-bonded canonical form, **(2)** the lone pairs on the protonated cyanide groups also made available by resonance with the double-bonded form, and (3) the π electrons in the C=N bond.

It does not appear to be possible to decide upon a definite structure for the $H₄M(CN)₆$ acids on the basis of the information we have. Several plausible threedimensional networks of $H₄M(CN)₆$ units linked together by hydrogen bonds may be imagined.

Assignment of Frequencies

While the hydrogen-bonding perturbation on the NH stretching and bending vibrations is very great, the effect on the CN stretching frequencies is small and on the MC stretching modes very small. In view of this the normal CN stretching, MC Stretching, MCN bending, and CMC bending modes are probably best described by the representations of the molecular symmetry group (D4h), while the selection rules which govern the infrared activity of these normal modes will be determined by the site group (C_i) . Hence, for all but the NH stretching and bending modes, we will assign the activity of the site group representation to the representation of the molecular group with which it is correlated and then assign the observed frequencies to the appropriate representation of the molecular group. The NH stretching and bending frequencies, however, will be assigned to representations of the site group, bearing in mind the possibility that each of these frequencies may be split by interaction between the two molecules in a unit cell.

Table IV shows the correlation between the molecular symmetry group, the site group, and the unit cell group. Table V lists the representation, activity, and an approximate description for each normal mode of vibration of an $H_4M(CN)_6$ unit. Our assignments of the observed frequencies to the normal modes are given in the last column of Table I.

Since under the site group only modes of **u** symmetry are allowed in the infrared, the first overtones and binary combinations of infrared-active fundamentals will not be infrared-active. However, binary combinations of infrared fundamentals with Raman fundamentals will be infrared-active; assignment of such bands enables the frequency of several Raman-active fundamentals to be predicted. The fact that the combination tone absorptions do not decrease in intensity on cooling

^a Under C_i symmetry for NH modes; under D_{4h} symmetry for all other modes. \bar{b} The symbols ν , ν' , δ , δ' , and π are, respectively, in-plane stretching, axial stretching, in-plane bending, axial bending, and out-of-plane bending. ϵ R = Raman active, $IR = infrared$ active, $In = inactive$.

to 80'K. demonstrates that they are not difference bands.

A, Vibrations.-These comprise the infrared-active NH stretching and bending modes. For the stretching vibrations we have, as already discussed, the problem of accounting for two "extra" bands. In Table I we

have labeled the 3040 and 2570 cm.⁻¹ bands as the fundamentals ν_{22} and ν_{23} and designated the "extra" bands as v'_{22} and v'_{23} . The "extra" bands are most readily explained as being combination tones of NH bending modes in Fermi resonance with ν_{22} and ν_{23} . Suitable binary combinations occur, and this is the interpretation we favor (the assignment of combination tones is discussed in the section on A_g vibrations). The absence of a deuterio analog of ν'_{22} , and the weakness of the deuterio analog of v'_{23} , may be attributed to the combination tones going out of resonance with ν_{22} and ν_{23} on deuteration.

We have also considered the possibility that the $\nu(NH)$ fundamentals are doubled because of tunneling of the protons between two symmetric potential energy minima (it has been shown³² that the observation of a doublet which can be ascribed to an *asymmetric* double minimum potential is very unlikely). This mechanism has been invoked^{17,33} in a number of instances to account for splittings of hydrogen-bonded AH stretching modes of the order of magnitude which we observe $(270 \text{ and } 200 \text{ cm.}^{-1})$. In the present case the behavior of ν'_{22} and ν'_{23} on deuteration shows that they do not arise because of proton tunneling.

The assignment of the NH bending modes in Table I is as discussed earlier; the alternative in which the 1290, 1270 cm. $^{-1}$ pair is assigned as a fundamental was chosen because this allows the combination tones at 2630 and 1960 cm.⁻¹ to be assigned as binary sums. An assignment of the bending frequencies according to the second alternative, in which the 1290, 1270 cm. $^{-1}$ bands are considered to be combination tones, is also possible, but the combination bands at 2630 and 1960 $cm.$ ⁻¹ must then be expressed as ternary sums.

A_g Vibrations.—The thirteen weak absorptions above 4000 cm^{-1} are undoubtedly due to combinations of NH stretching, NH bending, and CN stretching fundamentals. Eleven of these bands agree reasonably well with binary sums of infrared frequencies. Of the remaining two bands one is found only in $H_4Fe(CN)_6$ (~ 5050 cm.⁻¹) and the other is exceedingly weak (4562 cm.^{-1}) ; several ternary sums of infrared frequencies fall near these bands. These facts suggest that there are no Raman-active NH stretching, NH bending, or CN stretching fundamentals with frequencies greatly different from the corresponding infrared-active fundamental, for if there were we would expect to see combination tones that did not correspond to a sum of infrared frequencies.

This is a reasonable conclusion since in a $H₄M(CN)₆$ molecule the vibrations of the KH groups should be independent, as should also the stretching motions of the CN groups.³⁴ Hence corresponding u and g vibrations will have nearly the same energy. To be explicit, we assume that $\nu_1 \sim 3050 \text{ cm.}^{-1}$, $\nu'_1 \sim$ explicit, we assume that $\nu_1 \sim 3050 \text{ cm.}^{-1}$, ν'_1
2780 cm.⁻¹, $\nu_2 \sim 2580 \text{ cm.}^{-1}$, $\nu'_2 \sim 2370 \text{ cm.}^{-1}$, ν_3 2780 cm.⁻¹, $\nu_2 \sim 2580$ cm.⁻¹, $\nu'_2 \sim 2370$ cm.⁻¹, $\nu_3 \sim$
1650 cm.⁻¹, $\nu_4 \sim 1290$ cm.⁻¹, $\nu_5 \sim 890$ cm.⁻¹, and $\nu_6 \sim$ 680 cm.⁻¹, and that on deuteration these bands shift by the same amounts as the corresponding infrared bands. ν'_1 and ν'_2 are the Raman analogs of ν'_{22} and ν'_{23} . With these assumptions the assignment of the combination tones above 4000 cm .^{-1}, and most of those below 4000 cm.⁻¹ (including ν'_{22} and ν'_{23}), are as given in Table I. We do not think it is justified to write down more exact predictions of the frequencies of the A_{α} vibrations than those just given.

 E_u , A_{2u} , and B_{2u} Vibrations.—With our earlier discussion in mind it is clear that the 2100 cm.^{-1} band in the deuterio acid spectra must be assigned as ν_{28} . It seems likely that deuteration will cause *V28* to shift slightly to lower energy because of decreased interaction with the hydrogen-bond stretching frequency $\nu(N\cdots H)$. We therefore assign the \sim 2106 cm.⁻¹ proton acid band as ν_{28} . The absorptions at 2096 and 2072 cm.⁻¹ must then be assigned as ν_{16} split by the site symmetry (ν_{16a} and ν_{16b}).

Again on the basis of the earlier discussion the bands at 419 and 406 cm.⁻¹ are attributed to v_{17} and v_{29} , but we cannot say which is which. This leaves the ~ 600 , 588, 473, 463, and 448 cm.^{-1} bands as possibilities for assignment to ν_{18} , ν_{19} , ν_{30} , and ν_{32} . If we consider the $Fe(CN)_{6}^{4-}$ ion in $H_{4}Fe(CN)_{6}$ as having O_h symmetry with a D_{4h} perturbation, the 588 and ~ 600 cm.⁻¹ absorptions would be assigned as the F_{1u} MCN bend split into its A_{2u} and E_u components, and the 448 cm.⁻¹ band would have to be the E_u components of the F_{2u} MCN bend. Hence the 588 and 600 cm.⁻¹ bands are v_{29} and v_{18} or v_{19} while 448 cm.⁻¹ must be v_{19} or v_{18} . The very weak shoulder at 463 cm.^{-1} is reasonably assigned as ν_{32} , the B_{2u} $\pi(MCN)$ mode, which is not allowed under D_{4h} but becomes infrared-active under C_i and should therefore have only little intensity.

A₁₄ **Vibrations.**—For the purpose of assigning combination tones we have assumed that $\nu_7 \sim 2070$ combination tones we have assumed that $\nu_7 \sim 2070$
cm.⁻¹, $\nu_8 \sim 2110$ cm.⁻¹, and $\nu_{12} \sim 2090$ cm.⁻¹.

Acknowledgment.--We thank Mr. C. R. Sprinkle for assistance with the experimental work.

⁽³²⁾ l<. L. Somorjai and 11. r?. Hornig, *J. Chcm. Phys,,* **36,** 1080 (1962). (33) R. Blinc and D. Hadzi, *Mol. Phys.*, 1, 391 (1958); C. L. Bell and G. *AI.* Barrow, *J. Chem. Phys.,* **31,** 1158 (1959).

⁽³⁴⁾ See, for example, L. H. Jones, *J. Mol. Spectry.*, **8**, 105 (1962). There is considerable MC, MC interaction.